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Abstract

Taking inspiration from recent developments in visual
generative tasks using diffusion models, we propose a
method for end-to-end speech-driven video editing using
a denoising diffusion model. Given a video of a talking
person, and a separate auditory speech recording, the lip
and jaw motions are re-synchronized without relying on in-
termediate structural representations such as facial land-
marks or a 3D face model. We show this is possible by con-
ditioning a denoising diffusion model on audio mel spec-
tral features to generate synchronised facial motion. Proof
of concept results are demonstrated on both single-speaker
and multi-speaker video editing, providing a baseline model
on the CREMA-D audiovisual data set. To the best of our
knowledge, this is the first work to demonstrate and vali-
date the feasibility of applying end-to-end denoising diffu-
sion models to the task of audio-driven video editing. 1

1. Introduction
The idea behind audio-driven video editing is to provide

a means to re-synchronise the lip and jaw movements of
an actor in a video, in response to a new speech input sig-
nal. This new speech signal may come from the original
speaker, or a voice actor. Regardless of the source of the
input speech, a key objective is that the performance of the
actor is never diminished. No matter how the lip and jaw
movements change in response to the new audio, the facial

*Both Authors Contributed Equally to the Paper
1All code, datasets, and models used as part of this work are made

publicly available here: https://danbigioi.github.io/DiffusionVideoEditing/

expressions, and emotions portrayed by the actor should re-
main consistent with the original performance.

Achieving such seamless audio-driven video editing is
an exciting prospect for the entertainment industry, one with
the potential of being applied to movies, TV shows, live
streaming, and even homemade content uploaded to plat-
forms such as YouTube, TikTok, and others. Giving video
content creators the ability and option to edit their work
without having to go through time-consuming, and expen-
sive re-shoots, allows them to work with a greater tolerance
for error during filming.

Furthermore, the realisation of true audio-driven video
editing would bring about a significant transformation in
the world of cinema and television, allowing for more
accessible and cost-effective dubbing of English-language
movies/TV shows/videos into other languages and vice
versa, allowing for the further democratisation of video con-
tent by making it more engaging and personalized for au-
diences worldwide. Recent advancements in deep learn-
ing and talking head generation techniques are bringing us
closer to this exciting possibility, where audio and video
will be seamlessly synchronized in real-time.

Current approaches for speech driven video editing, and
the related task of talking head generation can be grouped
into two distinct types: structured, and unstructured. Struc-
tured generation refers to techniques that use the speech
signal to first extract an intermediate structural represen-
tation of the face (facial landmarks, 3D model expression
parameters), before utilizing it to render the photo-realistic
frame [7, 31, 70, 85, 88]. On the other hand, unstructured
generation techniques [18, 29, 72, 87], utilise image recon-
struction techniques to generate the photo-realistic frame
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directly in an end-to-end manner.
Diffusion models [16, 24, 48, 61] are a relatively new

class of generative model that have recently been gaining
traction due to their strong performance on image synthesis
tasks, often outperforming state-of-the-art GAN (Genera-
tive Adversarial Network) [20]-based methods [16]. Util-
ising conditioning signals such as text and even images,
diffusion models have shown that they can be trained and
conditioned towards generating a specific desired output at
inference time with relative ease [55]. They achieve high
mode coverage unlike GANs, maintain high sample qual-
ity, and are stable during training. These properties make
them an ideal candidate for application towards the task of
unstructured audio-driven video editing, a task that has thus
far been dominated by GAN-based approaches [8, 11, 72].

We present an approach for automatic speech driven
video editing using a denoising diffusion model. We utilise
a U-Net backbone modifying it for the task of video editing,
and introduce a feature concatenation mechanism for con-
ditioning the network with information related to the pre-
viously generated frame in the sequence so that the net-
work can generate temporally coherent frames. We fur-
ther condition the network on speech by feeding spectro-
gram feature embeddings combined with the noise signal
throughout the residual layers of the U-Net as demonstrated
by Diffused Heads [66], though unlike their approach, we
use spectral features rather than features extracted from a
pretrained speech encoder in order to capture as much in-
formation about the signal as possible. To the best of our
knowledge, this is the first work that applies denoising dif-
fusion models to the task of audio-driven video editing. As
part of this work, we state the following contributions to the
field:

• A novel unstructured end-to-end approach for audio-
driven video editing using a denoising diffusion model.
We condition the network on speech and train it to
modify the face such that the lip and jaw movements
are synchronised to the conditioning audio signal on a
frame-by-frame basis. We train both single, and multi-
speaker proof-of-concept models using the GRID [14],
and CREMA-D [6] datasets respectively, achieving
strong proof-of-concept results when tested on unseen
speakers. The project code, datasets, and trained mod-
els will be made freely available to the public.

• We demonstrate the applicability of our approach on
the video editing task, achieving competitive results
thanks to our conditional inpainting strategy which
gathers information from previous frames and audio
spectral embeddings, to generate the current frame.
Our method achieves near state-of-the-art results when
measured on traditional image quality metrics such
as SSIM, PSNR, FID, and competitive SyncNet [13]

lip synchronisation scores compared to other relevant
methods from the field.

2. Related Works

2.1. Audio Driven Video Generation

Audio-driven video generation methods can generally be
categorised by whether they are generated by leveraging an
audio-driven structural representation of the face, or with-
out.

There have been numerous approaches over the years re-
lating to the former. Taylor et al. [69] and Karras et al. [32]
among the first to apply machine learning techniques to the
facial animation task, the former learning facial expression
parameters of a 3D face model from phoneme labels, and
the latter predicting 3D vertex positions of a face mesh from
a speech audio window. Suwajanakorn et al. [67] trained a
speaker specific network to output sparse mouth key-points,
using them to modify videos of President Obama. Eskimez
et al [17] presented a recurrent architecture capable of tak-
ing in speech as input and outputting 2D landmark face co-
ordinates, with Chen et al. [9] utilising cascaded GANs to
translate those landmark features into photorealistic frames.
Cudeiro et al. [15] introduced a 4D facial dataset, and
trained a network to generate animations from speech with
it. [5, 40, 73, 88] generated intermediate landmark features
from audio, also exploring the related task of extracting re-
alistic headpose. Thies et al. [70] generated 3D facial ex-
pression parameters using features from a pretrained audio
encoder, using these parameters to generate a photorealis-
tic video via a neural renderer, with [75] and [63] follow-
ing a similar approach but operating on videos instead. [7]
and [81] presented methods to generate 3D face animation
parameters, in addition to realistic head pose from speech,
using these features to generate photorealistic frames. Ji et
al. [31] approached the problem of video editing, generat-
ing emotion-controllable talking head portraits using both
intermediate landmark structures, and 3D model parame-
ters. [37, 54, 62, 76, 82, 84] are other approaches from the
literature which predict expression parameters from audio
to drive a 3D face model.

What these approaches all have in common is that they
use these intermediate structural representations as input to
a separate neural rendering model which is typically trained
as an image-to-image translation task to generate the final
photo-realistic image frame. As of the date of this submis-
sion, GAN-based [20] approaches such as Pix2Pix [28], Cy-
cleGAN [90], and other variations have proved immensely
popular for this task. However, diffusion-based techniques
show big promise for the future, especially given recent
developments in various image-to-image translation tasks
[58].

Nonstructural/end-to-end methods on the other hand
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utilise latent feature learning and image reconstruction tech-
niques to generate a photo-realistic video sequence from an
input speech signal and reference image/video in an end-to-
end manner. Approaches such as [8,18,29,36,44,50,65,72,
86, 87, 89] have seen much success in recent times. Each of
these approaches differs from the one used in this paper as
they are all GAN/VAE (variational autoencoder) [34] based
probabilistic methods while ours leverages a denoising dif-
fusion model. While current end-to-end approaches suffer
from low output resolution quality compared to structural
methods, there is a lot of potential for improvement, espe-
cially by exploiting diffusion models’ ability to synthesise
high-quality samples while maintaining good mode cover-
age/diversity.

2.2. Diffusion Models

Denoising diffusion models [61,64] have seen great suc-
cess on a wide variety of different challenges, ranging from
image-to-image translation tasks like inpainting, colorisa-
tion, image upscaling, uncropping [4, 25, 42, 43, 51, 55, 58,
60], audio generation [10, 27, 33, 35, 38, 49, 68, 78], text-
based image generation [2,19,21,47,53,57,59], video gen-
eration [22,26,80,83], and many others. Recently, diffusion
models have also been applied to the related task of talk-
ing head generation, with the work of [66] a concurrent ap-
proach to our own. For a thorough review of diffusion mod-
els and all of their recent applications, we recommend [79].

Diffusion models are a class of generative probabilistic
models that consist of two steps: 1) the forward diffusion
process that destroys data by steadily adding small amounts
of random Gaussian noise over a series of time steps until
the data becomes a sample from a standard Gaussian distri-
bution. 2) The reverse diffusion process where a denoising
model is trained to restore structure in the data by steadily
removing noise over a series of time steps. The trained
model can then sample information from random Gaussian
noise and steadily denoise it over a series of time steps to
attain the desired output.

Sohl-Dickstein et al. [61] developed the first diffusion
model and coined the term, followed by Ho et al. [24] com-
bining denoising score matching with Langevin dynamics
[64] and diffusion models to synthesise images. This ig-
nited a steady interest in diffusion models, with Nichol et
al. [48] showing that by making small adjustments to the
diffusion process, they could sample data faster and achieve
better log-likelihoods to models trained explicitly to min-
imise it with minimal impact to sample quality. They also
found that training diffusion models with more computa-
tional power typically lead to better sample quality. Chen
et al. [10] and Kong et al. [35] applied diffusion models to
the task of audio synthesis, succeeding in generating high-
quality samples. Dhariwal and Nichol [16] demonstrated
that diffusion models beat GANs on image synthesis, also

introducing the concept of "classifier guidance" for a condi-
tional generation.

As diffusion models are trained under a single loss and
do not rely on a discriminator, they are more stable dur-
ing training and do not suffer from typical issues associated
with training GANs such as mode collapse, and vanishing
gradients. They produce high-quality output samples and
display high mode coverage unlike GANs [77]. Despite
these advantages, their sampling speed is slow due to the
need to run the inverse diffusion process thousands of times
on the same sample to denoise it completely. Xiao et al. [77]
and Rombach et al [55] attempted at speeding up the sam-
pling and training times associated with diffusion models
with the former proposing a method to model the denoising
distribution using a complex multi-modal distribution in or-
der to facilitate larger diffusion steps, and the latter applying
diffusion models in the latent space of a pre-trained autoen-
coder to reduce the complexity. This is an ongoing focus of
research in the field, and it is a certainty that more works
tackling the inference/training speed problem will emerge.

3. Methodology
A diffusion model is defined as having two steps, the

forward diffusion process where the data is gradually de-
stroyed, and the learned inverse diffusion process which re-
constructs the data, and is used during training and infer-
ence. In our case, we condition a denoising U-Net on im-
age and speech features to denoise a masked portion of the
target frame into the desired output. A high-level overview
of this process is depicted in figure 1.

3.1. Diffusion process

3.1.1 Forward diffusion process

As defined by [61], the forward diffusion process is a
Markov chain that adds small amounts of noise to the data
y over a predefined number of time steps T, until the data
is completely destroyed at time step t=T. This state is repre-
sented as yT with y0 representing the data before any noise
was added to it. The Markov chain is defined by:

q (y1:T |y0) :=
T∏

y=1

q (yt|yt−1) (1)

where at each step, Gaussian noise is added by:

q (yt|yt−1) := N (yt;
√
αtyt−1, (1− αt)I) , (2)

with αt := (1 − βt), representing the hyperparameters of
our fixed noise scheduler. [24] show that it is possible to
sample yt at any step t in closed form:

q (yt|y0) := N
(
yt;
√
ᾱty0, (1− ᾱt)I

)
, (3)
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with ᾱt :=
∏t

s=1 αs. This is an important observation, as
it significantly speeds up the forward diffusion process, and
can be used to train a model on the fly with random noise
levels at each forward step.

3.1.2 Inverse diffusion process

Given a noisy image ȳ defined as:

ȳ :=
√
ᾱy0 +

√
1− ᾱϵ, ϵ ∼ N (0, I) (4)

the goal of the Inverse diffusion process is to learn an al-
gorithm that can denoise and restore the noisy image to its
original image Y0. Following the approach in [58], we train
a neural network fθ(x, ȳ, ᾱ, ω), a 2D U-Net [56], to pre-
dict the noise generated at time t, optimising the Lsimple

objective proposed by [24]:

Et,y0,ϵ

[ ∥∥∥fθ(x,√ᾱy0 +√1− ᾱϵ, ᾱ, ω)− ϵ
∥∥∥2 ] (5)

where x represents the identity and previous frame input to
our network, ȳ the noisy image, ᾱ the noise level, and ω the
audio features. During training, we only calculate the loss
for the masked region of the face to conserve computational
resources, following the approach in [58].

Following [24], to run inference, each step of the inverse
diffusion process can then be computed by:

yt−1 ←
1
√
αt

(
yt −

1− αt√
1− ᾱt

fθ(x, yt, ᾱt)

)
+
√
1− αtϵt,

(6)
where ϵ ∼ N (0, I). The inverse diffusion step is then re-
peated T times. Please see figure 1 for a high-level view
of our network architecture, and to better understand where
each equation is used. For a more detailed discussion be-
hind these equations, and how they are derived, please see
[24, 61, 64].

3.2. Model Architecture

Figure 1 depicts the overall architecture of our model.
We frame the problem of audio-driven video editing as a
conditional inpainting task with a few key changes. Tra-
ditionally, inpainting is an image-to-image translation task
where a neural network must learn to fill in a masked out
region of the image with realistic content. For video edit-
ing, we must provide the network with additional context,
to help guide its generation process. To do this, we split
the conditioning step into two categories, frame-based, and
audio-based conditioning.

Frame-Based Conditioning: For a given frame yi ex-
tracted from a video consisting of frames (y0,...,yn), our
model takes three images as input: 1) the current masked
noisy frame yiT that is to be inpainted, 2) the previous frame
y(i−1) in the video sequence, and 3) a constant identity

frame y0. As our approach is auto-regressive and works on
a frame-by-frame basis, the purpose of the previous frame
is to ensure that there is temporal stability between consec-
utive frames. Omitting it causes the model to output jittery,
unstable frames. The identity frame is there to encourage
the model not to deviate away from the target identity dur-
ing the generation process, as so often is the case with auto-
regressive models. While the identity frame can be omit-
ted if training a single-speaker model with little to no ad-
verse effects, we found that its inclusion was key to having
a model that could generalise well to unseen subjects when
training on multiple identities. These three frames are con-
catenated channel-wise, and fed into the U-Net as an input
feature of size [128x128x9], as depicted on the left hand
side of figure 1.

Audio-Based Conditioning:
For a given video sequence of frames (y0 ,..., yn), there is

a corresponding sequence of audio spectral features (spec0

,..., spec2n) extracted from the original speech signal. Each
audio feature spans a 40ms window, overlapping every
20ms. Details on how we compute these features are pro-
vided in section 3.3. In order to provide the audio infor-
mation to the network, we extract a window of audio from
(spec2i−2 to spec2i+2) spanning 120 ms denoted as zi that
is centered around the current video frame yi. We do this
so that audio information from both the preceding and fol-
lowing frames is captured within the window to guaran-
tee the accurate production of lip movements for plosive
sounds ("p, t, k, b, d, g") by taking into consideration that
these lip movements precede the sound production. We in-
troduce this information to the U-net via the use of condi-
tional residual blocks that condition the network on audio
and noise level embeddings, scaling and shifting the hidden
states of the U-net following the approach of [66]:

hs+1 = zis(tsGN(hs + tb)) + zib (7)

where hs and hs+1 represent consecutive hidden states
of the U-Net, (zis, z

i
b) = MLP(zi), and (ts, tb) = MLP(ᾱt).

MLP represents a shallow neural network with a couple of
linear layers separated by a SiLu() activation function, and
GN is a group normalisation layer. This is shown in figure
1.

U-Net Set Up: In order to denoise the current noisy
frame, we use a denoising U-net [56], following the gen-
eral architecture described by [58], which in turn is based
on the model proposed by [24] with modifications inspired
by the works of [16,60]. For this work we use a lightweight
128x128 version of the 256x256 U-net architecture de-
scribed by [16], omitting the class conditioning mechanism.
Like [58] we condition the model to generate the desired
frames via the concatenation of the previous and identity
frames to the masked frame. We drive the facial animation
by sending audio features throughout conditional residual
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Figure 1. High-level overview of the network architecture. Left of the dashed line indicates the training procedure, right of it depicts the
inference procedure.

⊕
represents the concatenation operator, and 99K represents a skip connection. The current frame is passed through

the forward diffusion process where the noise is computed and added to the masked region of the face, obtaining noisy frame Yt (Equation
3). The previous and identity frames are then concatenated channel-wise to it, forming a 128x128x9 feature and passed to the U-net
directly. Audio features and noise level information are fed into the U-net through conditional residual blocks as described in equation 7.
During inference, the predicted noise is removed from noisy image Yt, obtaining Yt−1. The previous and identity frames are concatenated
to Yt−1, and the process is repeated until the image is fully denoised (Equation 6).

blocks within the U-Net as detailed by [66], described by
equation 7. We include all details related to our U-Net con-
figuration in table 1.

Table 1 displays the hyperparameters we use to train our
diffusion model for the task of audio-driven video editing.
We train two models, a single-speaker model trained on
identity S1 of the GRID dataset, and a multispeaker model
trained on the train set of the CREMA-D dataset. A no-
table difference between the two models is the use of atten-
tion. For the single-speaker model, we omitted it from the
up/downsampling layers of the U-Net, using it only within
the middle block in an effort to boost training speed. De-
spite this, we still obtain pleasing results, as shown both
in table 2, and in the videos provided as part of the sup-
plementary materials. During our experiments, we discov-
ered that the use of attention within the multi-speaker model
was crucial for it to generalise well to both seen and unseen
speakers. We apply it at resolutions of 32x32 within the
up/downsampling layers of the U-Net. We provide more
discussion on this in section 4. To perform training we used
a server of 4 32GB V100 GPUs, allowing us a batch size of
40 per GPU.

Single ID Multi-ID

Image Size 128x128 128x128
Total Frames 73704 432000

Diffusion Steps 2000 1000
Noise Schedule Linear Cosine

Linear Start 1e− 06 NA
Linear End 0.01 NA

Input Channels 10 10
Inner Channels 64 64

Channels Multiple 1, 2, 4, 8 1, 2, 3
Attention Resolution NA 32

Res Blocks 2 2
Head Channels 32 32

Drop Out 0.2 0.2
Batch Size 10 40

Training Epochs 2000 735
Learning Rate 5e− 05 5e− 05

Table 1. U-Net Training Hyperparameters
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3.3. Data Processing

3.3.1 Dataset

We rely on the GRID [14], and CREMA-D [6] audio-visual
speech data sets to carry out the work in this paper. GRID is
a multi-speaker data set consisting of 34 speakers (18 male,
16 female), with each speaker uttering 1000 short 6-word
sentences. CREMA-D is a multi-speaker dataset consist-
ing of 7,442 talking head clips of 91 speakers from diverse
ethnic backgrounds. We present two models: 1) A single
speaker model trained on 950 videos from the speaker 1 of
the GRID dataset, with the model’s performance being eval-
uated on the remaining 50 videos on the task of video edit-
ing. 2) A multi-speaker model trained on a majority of the
CREMA-D dataset, with videos from identities 15, 20, 21,
30, 33, 52, 62, 81, 82, and 89 kept hidden from the model
for testing and evaluation purposes.

3.3.2 Audio Preprocessing

From each video within the GRID and CREMA-D datasets,
we extract the audio files and resample them at 16Khz.
From the audio we compute overlapping mel-spectrogram
features with n-fft 2048, window length 640, hop length
320, and 256 mel bands. With these values, a 1-second au-
dio feature has a shape [50,256] that can be easily aligned
to a sequence of video frames.

3.3.3 Video Preprocessing

First, we perform a 128x128 pixel crop centered around the
face on every video frame. We do this by aligning the face
in the video to the canonical face with a smoothing window
of 7 frames, following the approach of [71]. We do this for
two reasons: To get rid of any irrelevant background, and to
reduce the image size to facilitate faster training and conver-
gence speeds. In our initial experiments, we used an image
size of 256x256 however the model was too expensive to
train on our limited resources. It is worth noting that a video
super-resolution technique such as [39] may be applied on
top of our solution to achieve high-resolution samples.

Next, every video frame needs to have a rectangular re-
gion of the face masked out. Using an off-the-shelf facial
landmark extractor [41], we extract facial landmark coordi-
nates to determine the position of the jaw. Using this infor-
mation, we mask out a rectangular portion of the face that
covers a region just below the nose, as within figure 1. This
face mask is computed and applied to the frames at train
time within the data loader on the fly.

During training, it is critical to hide the speaker’s jawline
with a rectangular face mask. This is because the network
can easily pick up on the strong correlation between lip and
jaw movements, leading it to ignore the speech input en-
tirely. By hiding the jawline, we compel the model to learn

to generate lip movements based solely on the accompany-
ing speech. As the diffusion process relies on a single loss
function, applying the rectangular face-mask is the easiest
way to prevent the frame-based input dominating over the
speech input.

3.3.4 Audio Video Alignment:

As described previously in section 3.2, given a video se-
quence with frames (y0 ,..., yn), there is a corresponding
sequence of audio spectral features (spec0 ,..., spec2n) ex-
tracted from the original speech signal. Each audio feature
spans a 40ms window, overlapping every 20ms. For any
given frame Y i, it is aligned to audio features spanned by
(spec2i−2 to spec2i+2). To align the first and last video
frames, we simply append silence to the start, and ends of
their respective audio features. Care must be taken when
choosing the audio window, too large and the network won’t
use the most meaningful information available to it, too
small and there may not be enough context for the network
to generate more complex lip movements caused by plo-
sives.

4. Experiments & Results
In this section we present two models. A single-speaker

video editing model trained on speaker S1 from the GRID
dataset, and a multi-speaker model trained on the train-
split of the CREMA-D dataset. We evaluate and compare
our results to other recent audio-driven video generation
methods, namely EAMM [30], PC-AVS [87], MakeItTalk
[88], Speech Driven Animation [72], and Wav2Lip [50].
All models we test against are relevant end-to-end image-
reconstruction based methods, except for MakeItTalk, a
landmark-based method we compare against for reference
purposes. We evaluate these models on the CREMA-D mul-
tispeaker test set, reporting their scores along with our own
in table 2. We generate the videos for each model using the
official publicly available implementations with the recom-
mended parameters.

As our models are trained explicitly for video editing,
they generate only a small portion of the overall frame,
while keeping the rest as is. Therefore, to maintain fair-
ness, all metrics that rely on comparing the generated frame
to the ground truth are computed only on the generated por-
tion of the image. This limitation could also create bias
in the perceptual metrics and readers should consider this
when comparing our model scores to others within the lit-
erature.

We emphasise that the objective of this paper is to serve
as a proof-of-concept demonstrating the potential of apply-
ing denoising diffusion models to the task of audio-driven
video editing. As such, while we do not achieve state-of-
the-art in some of the metrics we report, our results still
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Method LSE-C↑ LSE-D↓ FID SSIM↑ PSNR↑ CPBD

Ground Truth CREMA-D 5.45 8.12 - - - -
EAMM (Actual) 3.98 8.92 22.52 0.74 29.43 0.1

EAMM (Random) 3.95 8.98 23.04 0.72 29.21 0.124
PC-AVS (Actual) 6.12 7.8 38.46 0.61 28.47 0.127
PC-AVS (Randon) 6.07 7.82 40.05 0.59 28.42 0.11

SpeechDrivenAnimation - - 155.63 0.844∗ 27.98∗ 0.277∗

Wav2Lip(Actual) 5.89 7.57 16.21 0.886 34.23 0.253
Wav2Lip(random) 5.6 7.89 20.23 0.872 34.04 0.247

Make It Talk 3.5 9.71 27.35 0.75 31.37 0.152
Ours (MultiSpeaker - 100) 3.53 9.74 2.362† 0.893 34.32 0.26
Ours (MultiSpeaker - 500) 3.5 9.68 2.13† 0.902 34.4 0.26

Ours (MultiSpeaker - 1000) 3.49 9.69 2.369† 0.863 34.12 0.242
Ours (Single Speaker) 4.98 7.59 2.312† 0.92 32.47 0.29

Table 2. Quantitative comparison with previous works on image quality and lip synchronization metrics. Most previous works we compare
to require a driving video to guide the pose of the generated speaker. For these approaches (Actual) indicates whether we provided the
ground truth video to their model in addition to the ground truth audio to generate the new video, while (Random) indicates that we used
a random audio file instead. We report their results under both configurations to maintain fairness. For our models we also indicate how
many diffusion timesteps were used to generate the frames during inference. We report results for 100, 500, and 1000 inference steps. †

indicates that this metric was computed on the full frame. ∗ indicates that these results are reported from their paper.

Figure 2. Multi-speaker failure case: Over time the appearance of
the speaker slowly drifts away from the original.

show promising improvements over existing methods and
highlight the potential of using denoising diffusion models
for this task instead of traditional GAN-based methods.

4.1. Evaluation Metrics

We use a number of objective metrics to measure the
quality of our generated videos, allowing us to compare
them directly to other state-of-the-art audio-driven video
generation methods from the literature. We compute SSIM
[74] (Structural Similarity Index Measure) ↑, PSNR (Peak
Signal to Noise Ratio) ↑, and FID [23] (Frechet Inception
Distance) ↓ scores for the generated videos against their
corresponding ground truth to measure the overall quality
of the generated frames. We also compute CPBD [46] (Cu-
mulative Probability Blur Detection) ↑ scores, and Sync-
Net [13,50] Confidence (LSE-C) ↑ and Distance (LSE-D) ↓
scores. We reiterate the point that in order to maintain fair-
ness when computing the image quality metrics, we only
compute them on the generated portion of the image where
possible.

4.2. Single Speaker

We train our single speaker model on identity S1 us-
ing data from the GRID audio-visual corpus [14]. There
are 1000 videos in total, each of them roughly 3 seconds
in length totaling about 50 minutes of audio-visual content
for training. We train our model on 950 videos, withhold-
ing 50 of them for testing purposes. We train this model
for 895 Epochs. As we mentioned previously, we did not
use any attention layers within the up/downsampling blocks
of this model, using it just within the middle block of the
U-Net. We did this to save on training time, however, for
stronger results we recommend using it, as we show within
our multi-speaker model.

4.3. Multi-Speaker

We train our multi-speaker model on all identities of the
CREMA-D data set except for speakers 5, 20, 21, 30, 33,
52, 62, 81, 82, and 89, choosing to keep them hidden from
the model for testing purposes. We train the model for 735
Epochs. There are a number of key changes we make to
train the multi-speaker model. First, we use self-attention
layers within the U-Net at the 32x32 resolution, as well as
in the middle block. Second, we switch to a cosine noise
schedule and decrease the number of diffusion steps taken
by the model during training to 1000. Finally, we decrease
the number of channel multiples to [1,2,3]. We also ex-
perimented with training a model without attention in the
up/downsampling blocks. It failed to converge on even train
set identities. We speculate that increasing the number of
inner channels used by our U-Net from 64 to 128 or 256
would significantly improve the results, as well as training
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the model for a longer amount of time. Please see table 2
for a summary of our experiments and evaluations, com-
pared to other popular works in the literature, and section
4.4 for a detailed discussion surrounding the results.

4.4. Results Discussion

Table 2 depicts the results our models score when tested
on their unseen test sets versus other approaches in the liter-
ature. While the results we obtain are not state-of-the-art in
all metrics, they successfully demonstrate that using a de-
noising diffusion model to do audio-driven video editing,
is indeed quite feasible, and produces high-quality results
comparable to other relevant methods in the literature.

The multi-speaker model generalises quite well to un-
seen speakers, scoring highly on image quality metrics,
managing to outperform all other methods except for
Wav2Lip on SSIM and CPBD. The single speaker model
also achieving similarly strong results. We believe that this
is due to the diffusion models inherent ability to model
complex, high-dimensional data distributions, allowing it
to learn the statistical properties of the dataset and generate
images that are similar to those in the training set. Further,
as diffusion models are trained to gradually remove noise
from the target image over time, this may help it generate
smoother, and more visually pleasing results than those gen-
erated by a GAN-based model which generates the frame in
one shot. Within the context of audio-driven video editing,
achieving visually pleasing results is a key requirement that
our model fulfills. Please see the videos attached in the sup-
plementary material for a visual comparison between our
method and existing ones.

When evaluated on SyncNet [13] confidence (LSE-C)
and distance (LSE-D) scores, our multi-speaker results are
comparable to other popular methods from the literature,
slightly outperforming MakeItTalk, but scoring lower than
EAMM. PC-AVS and Wav2Lip score the highest in that
order. Notably, their approaches significantly outperform
the ground truth. We believe that this is because all other
methods are specifically trained to optimise a loss function
designed to penalise their models for poor lip synchronisa-
tion. In the case of PC-AVS and Wav2Lip, they both rely
on a strong lip sync discriminator, to encourage their mod-
els to generate distinct, clear lip movements given speech.
Our approach uses no such losses or discriminators, in-
herently learning the relationship between speech and lip
movement during training. As such while our lip synchro-
nisation scores on unseen speakers are lower, we offer a
novel approach to the task as we do not explicitly train the
model to improve lip synchronisation.

It is also worth noting that our single-speaker model per-
forms very well on the synchronisation metrics mentioned
above, leading us to speculate that with more time spent
learning the data distribution, our multi-speaker model

could also theoretically achieve such results.
During inference, we noticed that the multi-speaker

model occasionally struggled to maintain the identity con-
sistent throughout the generation process, with the problem
especially prevalent if there were extreme changes in head
pose present in the original video. This is due to a buildup of
small errors, as our approach is completely auto-regressive
at inference time, relying entirely on just the previously
generated frame, and identity frame to modify the current
frame. Figure 2 highlights one such instance of failure, and
the phenomenon is noticeable in some of the videos we pro-
vide in our video abstract. We speculate that this could be
alleviated in three ways 1) introducing small amounts of
face warping on the previous frame during training in order
to simulate the distortion that naturally occurs over the gen-
eration process. This would encourage the model to look at
the identity frame in order to correct itself. 2) Simply train
the model for longer. 3) Train on a more diverse dataset of
speakers captured in unconstrained conditions such as Vox-
Celeb or LRS.

When testing on identities seen by the network during
training by replacing the original audio with a new one, the
model achieves strong lip synchronisation, and the identity
deviation seen when testing on unseen identities is signifi-
cantly diminished, or simply does not occur over the course
of the video. This problem is also non-existent in our single-
speaker model.

We also observed that the multi-speaker model is highly
sensitive to speaker volume, and intonation, especially
when exposed to speech from unseen speakers. In instances
where the speaker shouts or speaks loudly and clearly at
the microphone, the lip movement is highly accurate and
appears well-synchronised. When the volume is low, the
speaker appears to be mumbling, and the full range of lip
motion is not correctly generated. Analysing the synchro-
nisation metrics confirmed this for us, with videos gener-
ated using audio labelled as being "angry" or "happy", scor-
ing significantly higher than instances where the portrayed
emotion was "sad", "fearful", or "disappointed". We sus-
pect that this is due to our use of spectral feature embed-
dings when conditioning our network, and could be alle-
viated or significantly diminished with the use of a pre-
trained audio encoder for speech recognition. This is be-
cause such models are typically trained to extract the con-
tent from speech, disregarding information considered irrel-
evant such as pitch, or tone, and intonation.

5. Future Work
Model Speed and In The Wild Training: It is no secret

that diffusion models are slow, both to train and to sam-
ple from. Our models are no exception, taking us approx-
imately 6 minutes/epoch to train the single-speaker model,
and 40 minutes/epoch for the multi-speaker one. We briefly
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experimented with training in the latent space to speed up
training following the approach of [55], however, sample
quality suffered, so we decided to operate in the pixel space.
We intend to revisit this however as improving our models
training speed is a top priority for us as it would allow us to
train on larger, more diverse, "in-the-wild" datasets such as
VoxCeleb [45], or LRS [12].

Appearance Consistency: As previously discussed, our
multi-speaker model’s generated output appearance for un-
seen identities occasionally deviates from the original. To
investigate this phenomenon, we intend to delve deeper into
the underlying causes. Specifically, we will explore whether
this effect is due to inadequate training or insufficient diver-
sity in the training dataset, or a combination of both. By
conducting a more detailed analysis, we hope to gain a bet-
ter understanding of how to optimize our model’s perfor-
mance for a wider range of identities. Further, we intend to
fully train a model that utilises the face warping augmen-
tation to determine whether this truly provides a positive
impact on the generated samples.

Speech Conditioning: We plan to explore the potential
of conditioning our model with a wider range of speech fea-
tures, such as experimenting with larger or smaller window
sizes when computing spectral features or using pre-trained
audio encoders such as Wav2Vec2 [3], Whisper [52], or
DeepSpeech2 [1]. We believe that incorporating such fea-
tures could potentially improve the lip synchronization per-
formance of our model and generate even more realistic and
expressive lip movements.

6. Conclusion
Our results showcase the versatility of denoising diffu-

sion models in capturing complex relationships between
audio and video signals and generating coherent video se-
quences with accurate lip movements for the task of speech-
driven video editing. We are encouraged by the strong per-
formance achieved by our proof-of-concept approach, scor-
ing highly on all tested metrics, comparable to existing state
of the art in end-to-end video generation.

However, our work is not without limitations. The
CREMA-D dataset is relatively small compared to other
publicly available speech and video datasets, which lim-
its the generalizability of our approach to other domains.
Additionally, our approach requires a significant amount of
computational resources and time to train. This is a chal-
lenge for real-time applications or for training on large-
scale datasets.

We are confident that our work will inspire further re-
search and development in this area, leading to more effi-
cient and effective methods for speech-driven video edit-
ing. With the continuing advancements in machine learn-
ing and computer vision, we believe that denoising diffu-
sion models will play an increasingly important role in en-

abling high-quality and immersive multimedia experiences
that can better reflect the diversity and richness of human
communication.
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